Linux网络编程--epoll模型ET触发模式之epolloneshot事件
原文链接: Linux网络编程--epoll模型ET触发模式之epolloneshot事件
Linux网络编程--epoll模型ET触发模式之epolloneshot事件
epoll模型的ET模式一般来说只触发一次,然而在并发程序中有特殊情况的存在,譬如当epoll_wait已经检测到socket描述符fd1,并通知应用程序处理fd1的数据,那么处理过程中该fd1又有新的数据可读,会唤醒其他线程对fd1进行操作,那么就出现了两个工作线程同时处理fd1的情况,这当然不是我们期望看到的。
那么下面我们就介绍epolloneshot事件,此规定操作系统最多触发其上注册的一个可读或者可写或者异常事件,且只触发一次,如此无论线程再多,只能有一个线程或进程处理同一个描述符。当然处理完之后线程要重置这个epolloneshot事件,进而当此描述符有事件可读时让其他进程可以处理此描述符。
下面就此epolloneshot事件编写一段测试代码:
客户端程序可以参见上篇博文的客户端程序(无序改动):http://blog.csdn.net/hnlyyk/article/details/50946194
服务端程序:
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <assert.h>
#include <stdio.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>
#include <sys/epoll.h>
#include <pthread.h>
#define MAX_EVENT_NUMBER 1024
#define BUFFER_SIZE 1024
struct fds
{
int epollfd;
int sockfd;
};
int setnonblocking( int fd )
{
int old_option = fcntl( fd, F_GETFL );
int new_option = old_option | O_NONBLOCK;
fcntl( fd, F_SETFL, new_option );
return old_option;
}
void addfd( int epollfd, int fd, bool oneshot )
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET;
if( oneshot )
{
event.events |= EPOLLONESHOT;
}
epoll_ctl( epollfd, EPOLL_CTL_ADD, fd, &event );
setnonblocking( fd );
}
void reset_oneshot( int epollfd, int fd )
{
epoll_event event;
event.data.fd = fd;
event.events = EPOLLIN | EPOLLET | EPOLLONESHOT;
epoll_ctl( epollfd, EPOLL_CTL_MOD, fd, &event );
}
void* worker( void* arg )
{
int sockfd = ( (fds*)arg )->sockfd;
int epollfd = ( (fds*)arg )->epollfd;
printf( "start new thread to receive data on fd: %d\n", sockfd );
char buf[ BUFFER_SIZE ];
memset( buf, '\0', BUFFER_SIZE );
while( 1 )
{
int ret = recv( sockfd, buf, BUFFER_SIZE-1, 0 );
if( ret == 0 )
{
close( sockfd );
printf( "foreiner closed the connection\n" );
break;
}
else if( ret < 0 )
{
if( errno == EAGAIN )
{
reset_oneshot( epollfd, sockfd );
printf( "read later\n" );
break;
}
}
else
{
printf( "get content: %s\n", buf );
sleep( 5 );
}
}
printf( "end thread receiving data on fd: %d\n", sockfd );
}
int main( int argc, char* argv[] )
{
if( argc <= 2 )
{
printf( "usage: %s ip_address port_number\n", basename( argv[0] ) );
return 1;
}
const char* ip = argv[1];
int port = atoi( argv[2] );
int ret = 0;
struct sockaddr_in address;
bzero( &address, sizeof( address ) );
address.sin_family = AF_INET;
inet_pton( AF_INET, ip, &address.sin_addr );
address.sin_port = htons( port );
int listenfd = socket( PF_INET, SOCK_STREAM, 0 );
assert( listenfd >= 0 );
ret = bind( listenfd, ( struct sockaddr* )&address, sizeof( address ) );
assert( ret != -1 );
ret = listen( listenfd, 5 );
assert( ret != -1 );
epoll_event events[ MAX_EVENT_NUMBER ];
int epollfd = epoll_create( 5 );
assert( epollfd != -1 );
addfd( epollfd, listenfd, false );
while( 1 )
{
int ret = epoll_wait( epollfd, events, MAX_EVENT_NUMBER, -1 );
if ( ret < 0 )
{
printf( "epoll failure\n" );
break;
}
for ( int i = 0; i < ret; i++ )
{
int sockfd = events[i].data.fd;
if ( sockfd == listenfd )
{
struct sockaddr_in client_address;
socklen_t client_addrlength = sizeof( client_address );
int connfd = accept( listenfd, ( struct sockaddr* )&client_address, &client_addrlength );
addfd( epollfd, connfd, true );
}
else if ( events[i].events & EPOLLIN )
{
pthread_t thread;
fds fds_for_new_worker;
fds_for_new_worker.epollfd = epollfd;
fds_for_new_worker.sockfd = sockfd;
pthread_create( &thread, NULL, worker, ( void* )&fds_for_new_worker );
}
else
{
printf( "something else happened \n" );
}
}
}
close( listenfd );
return 0;
}
从工作线程函数work来看,如果一个线程处理完某个socket上的请求之后,又接收到该socket的请求,那么该线程继续为该socket服务,如果5S之后没有接收到该socket请求,则放弃为此socket服务,同时重置该socket事件,进而使其他线程有机会为该socket服务。
注意:一个socket在不用时期可以由不同工作线程处理,但同一时刻只有一个线程为之服务,保证了连接的完整性,避免了很多可能的竟态条件。