yolo pretrain convert
原文链接: yolo pretrain convert
1.voc数据集转换
数据集目录结构
└── VOCdevkit
└── VOC2012
├── Annotations
│ ├── 20190615163323424.xml
│ ├── .......还有很多xml
├── ImageSets
│ └── Main #标签的训练和验证集文本
│ ├── biji_train.txt
│ ├── biji_val.txt
│ ├── dian _train.txt
│ ├── dian _val.txt
│ ├── henji_train.txt
│ ├── henji_val.txt
│ ├── yahen_train.txt
│ └── yahen_val.txt
└── JPEGImages
├── 20190615163323424.bmp
├── .......还有很多图片
转换脚本
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2012', 'biji_train'), ('2012', 'biji_val'), ('2012', 'dian _train'), ('2012', 'dian _val'), ('2012', 'henji_train'),('2012', 'henji_val'), ('2012', 'yahen_train'), ('2012', 'yahen_val')]
classes = ["biji", "dian ", "henji", "yahen"]
def convert(size, box):
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
def convert_annotation(year, image_id):
print('%s'%(image_id))
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult)==1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
if __name__ == '__main__':
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs('VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
filename = os.path.splitext(image_id)[0]
if filename == '1' or filename == '-1':
continue
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.bmp\n'%(wd, year, filename))
convert_annotation(year, filename)
list_file.close()
os.system("cat *_train.txt > train.txt")
os.system("cat *_val.txt > val.txt")
转换脚本执行后会生成train.txt 和val.txt 和数据集目录下会有lables文件夹,train.txt 和val.txt 需要再整合到voc.data
classes= 4
train = /darknet/mupian-demo/data/train.txt
valid = /darknet/mupian-demo/data/val.txt
names = /darknet/mupian-demo/data/voc.names
backup = /darknet/mupian-demo/backup
voc.names
biji
dian
henji
yahen
lables文件夹需要放置在train.txt(val.txt)中图片所在的文件夹的同级目录,也就是train.txt(val.txt)中的图片的上级目录
作者:baymin_
链接:https://www.jianshu.com/p/af2d292da518
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。