caffe mean
原文链接: caffe mean
mean.binaryproto转mean.npy
使用Caffe的C++接口进行操作时,需要的图像均值文件是pb格式,例如常见的均值文件名为mean.binaryproto;但在使用python接口进行操作时,需要的图像均值文件是numpy格式,例如mean.npy。所以在跨语言进行操作时,需要将mean.binaryproto转换成mean.npy,转换代码如下:
import caffe
import numpy as np
MEAN_PROTO_PATH = 'mean.binaryproto' # 待转换的pb格式图像均值文件路径
MEAN_NPY_PATH = 'mean.npy' # 转换后的numpy格式图像均值文件路径
blob = caffe.proto.caffe_pb2.BlobProto() # 创建protobuf blob
data = open(MEAN_PROTO_PATH, 'rb' ).read() # 读入mean.binaryproto文件内容
blob.ParseFromString(data) # 解析文件内容到blob
array = np.array(caffe.io.blobproto_to_array(blob))# 将blob中的均值转换成numpy格式,array的shape (mean_number,channel, hight, width)
mean_npy = array[0] # 一个array中可以有多组均值存在,故需要通过下标选择其中一组均值
np.save(MEAN_NPY_PATH ,mean_npy)
已知图像均值,构造mean.npy
如果已知图像中每个通道的均值,例如3通道图像每个通道的均值分别为104,117,123,我们也可以通过其构造mean.npy。代码如下:
import numpy as np
MEAN_NPY_PATH = 'mean.npy'
mean = np.ones([3,256, 256], dtype=np.float)
mean[0,:,:] = 104
mean[1,:,:] = 117
mean[2,:,:] = 123
np.save(MEAN_NPY, mean)
载入mean.npy
上面我们用两种方式构造了均值文件mean.npy,在使用时载入mean.npy的代码如下:
import numpy as np
mean_npy = np.load(MEAN_NPY_PATH)
mean = mean_npy.mean(1).mean(1)
————————————————
版权声明:本文为CSDN博主「hyman_yx」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/hyman_yx/article/details/51732656
import sys
# sys.path.insert(0, caffe_root + 'python')
import caffe
import caffe.proto.caffe_pb2 as caffe_proto
import numpy as np
def binaryproto_2_npy(binaryproto_file, npy_file):
'''
'''
blob = caffe.proto.caffe_pb2.BlobProto()
data = open(binaryproto_file, 'rb').read()
blob.ParseFromString(data)
data = np.array(blob.data)
arr = np.array( caffe.io.blobproto_to_array(blob) )
#out = arr[0]
print("[INFO] binaryproto shape {}".format(arr.shape))
np.save( npy_file , arr)
def data_2_binaryproto(binaryproto_file, mean):
"""
Create a binaryproto file with a single blob containing the given pixel-wise mean.
Overwrites any existing file with the same name.
:param filename: Filename to be used
:type filename: str
:param mean: Numpy array holding the mean
:type mean: numpy.multiarray.ndarray
"""
#if 4 != len(mean.shape):
# print("mean's shape should be 4-D, but is {}".format(mean.shape))
blob = caffe.io.array_to_blobproto(mean)
with open(binaryproto_file, "wb") as f:
f.write(blob.SerializeToString())
if __name__ == "__main__":
npy_file = "./imagenet_mean.npy"
binaryproto_file = "./imagenet_mean.binaryproto"
# generate_interpNet_mean_binaryproto((3,3), binaryproto_file)
binaryproto_2_npy(binaryproto_file, npy_file)